Extrinsic Evaluation of Dialog State Tracking and Predictive Metrics for Dialog Policy Optimization
نویسنده
چکیده
During the recent Dialog State Tracking Challenge (DSTC), a fundamental question was raised: “Would better performance in dialog state tracking translate to better performance of the optimized policy by reinforcement learning?” Also, during the challenge system evaluation, another nontrivial question arose: “Which evaluation metric and schedule would best predict improvement in overall dialog performance?” This paper aims to answer these questions by applying an off-policy reinforcement learning method to the output of each challenge system. The results give a positive answer to the first question. Thus the effort to separately improve the performance of dialog state tracking as carried out in the DSTC may be justified. The answer to the second question also draws several insightful conclusions on the characteristics of different evaluation metrics and schedules.
منابع مشابه
The Dialog State Tracking Challenge
In a spoken dialog system, dialog state tracking deduces information about the user’s goal as the dialog progresses, synthesizing evidence such as dialog acts over multiple turns with external data sources. Recent approaches have been shown to overcome ASR and SLU errors in some applications. However, there are currently no common testbeds or evaluation measures for this task, hampering progres...
متن کاملThe Dialog State Tracking Challenge Series: A Review
In a spoken dialog system, dialog state tracking refers to the task of correctly inferring the state of the conversation – such as the user’s goal – given all of the dialog history up to that turn. Dialog state tracking is crucial to the success of a dialog system, yet until recently there were no common resources, hampering progress. The Dialog State Tracking Challenge series of 3 tasks introd...
متن کاملOptimizing Generative Dialog State Tracker via Cascading Gradient Descent
For robust spoken dialog management, various dialog state tracking methods have been proposed. Although discriminative models are gaining popularity due to their superior performance, generative models based on the Partially Observable Markov Decision Process model still remain attractive since they provide an integrated framework for dialog state tracking and dialog policy optimization. Althou...
متن کاملSpectral decomposition method of dialog state tracking via collective matrix factorization
The task of dialog management is commonly decomposed into two sequential subtasks: dialog state tracking and dialog policy learning. In an end-to-end dialog system, the aim of dialog state tracking is to accurately estimate the true dialog state from noisy observations produced by the speech recognition and the natural language understanding modules. The state tracking task is primarily meant t...
متن کاملThe MSIIP System for Dialog State Tracking Challenge 4
This paper presents our approach for the Dialog State Tracking Challenge 4, which focuses on a dialog state tracking task on human-human dialogs. The system works in an turn-taking manner. A probabilistic enhanced frame structure is maintained to represent the dialog state during the conversation. The utterance of each turn is processed by discriminative classification models to generate a simi...
متن کامل